top of page

PUBLICATIONS

  • Matharaarachchi, S., Domaratzki, M. and Muthukumarana, S. (2024). Deep-ExtSMOTE: Integrating Autoencoders for Advanced Mitigation of Class Imbalance in High-Dimensional Data Classification. Under Review.

  • Taiwo, M., Akcora, C. and Muthukumarana, S. (2024). Assessing the Performance of Machine Learning Classifiers on
    Imbalanced Multi-Class Data. Under Review.

  • Wickramasinghe, A. and Muthukumarana, S. (2024). Enhanced Anomaly Detection through a Bayesian Framework
    with a Novel Network Merging Structure Learning Approach. Under Review.

  • De Silva, H., Malalgoda, N. and Muthukumarana, S. (2024). Bayesian Predictive Models for Identifying Influencing Factors on Public Transit Ridership in the United States. Under Review.

  • Matharaarachchi, S., Domaratzki, M. and Muthukumarana, S. (2024). Enhancing SMOTE for Imbalanced Data with
    Abnormal Minority Instances. Machine Learning with Applications. Accepted.

  • Afzali, E., Muthukumarana, S. and Wang, L. (2024). Navigating interpretability and alpha control in GF-KCSD testing with measurement error: A Kernel approach. Machine Learning with Applications. 100581.

  • Morrissette, S., Muthukumarana, S. and Turgeon, M. (2024). Parsimonious Bayesian Model-Based Clustering
    with Dissimilarities. Machine Learning with Applications 15, 100528.

  • Hosseinpour, S., Kinsner, W., Muthukumarana, S. and  Sepehri, N. (2024). Fault Detection in an Electro-Hydrostatic Actuator Using Polyscale Complexity Measures and Bayesian Classification. IEEE Open Journal of Instrumentation & Measurement. Accepted.

  • Ba, I., Turgeon, M., Veniamin, S., Joel, J., Miller, R.,Graham, M., Bonner, C., Bernstein, C., Arnold, D., Bar-Or, A., Marrie, R.A.,  O'Mahony, J.,  Yeh, E.,  Banwell, B.,  Waubant, E., Knox, N., Van Domselaar, G.,  Mirza, A., Armstrong, H., Muthukumarana, S. and McGregor, K. (2024). A Bayesian factor analysis model for high-dimensional microbiome count data. Under Review.

  • Wickramasinghe, A., Muthukumarana, S., Schaubroec, M. and Wanasundara, S. (2023). An anomaly detection method for identifying locations with abnormal behavior of temperature in school buildings. Scientific Reports. 13 (1), 22930.

  • Matharaarachchi, S., Domaratzki, M., Katz, A. and Muthukumarana, S. (2023). Long COVID Prediction in Manitoba Using Clinical Notes Data: A Machine Learning Approach. Under Review.

  • Jahid, M., Costa, M., Muthukumarana, S., Challenger, W.,  Xu, Y. and Cowen, L. (2023). Sockeye Salmon Stock
    Recruitment using Remote Sensing Covariates. Under Review.

  • Wickramasinghe, A., Muthukumarana, S. and Schaubroec, M. (2023). Hotspot Analysis in
    Commercial Buildings using Moran’s I Statistic. Under Review.

  • Afzali, E. and Muthukumarana, S. (2023). Gradient-Free Kernel Conditional Stein Discrepancy Goodness of Fit
    Testing. Machine Learning with Applications. 12, 100463, Online.

  • Wanasundara, S., Wickramasinghe, A., Schaubroec, M. and Muthukumarana, S. (2023). Detecting Thermal Anomalies in Buildings using Frequency and Temporal Domains Analysis. Journal of Building Engineering. 75, 106923.

  • Szturm, T., Nariman, S., Lezen, A., Kanitkar, A., Szturm, S., Parmar, S., Eskicioglu, R. and Muthukumarana, S. (2023). A Game-Based Mechatronic Device for Interactive Rehabilitation of Hand Function Post Stroke: Design, Prototyping and Feasibility Study. Under Review.

  • Wickramasinghe, L., Leblanc, A. and Muthukumarana, S. (2023). Semi-parametric Bayesian Estimation of Sparse Multinomial Probabilities with an Application to the Modelling of Bowling Performance in T20I Cricket. Annals of Biostatistics and Biometric Applications. Accepted.

  • Wickramasinghe, L., Leblanc, A. and Muthukumarana, S. (2023). Bayesian Inference On Sparse Multinomial Data Using Smoothed Dirichlet Distribution With An Application To COVID-19 Data. Model Assisted Statistics and Applications. 18: 207-226.

  • Turcotte-van de Rydt, C., Muthukumarna, s. and Fraser, K. (2023). Spring departure date, not en route
    conditions, drive migration rate and arrival timing in a long-distance migratory songbird. Frontiers in Bird
    Science. 2, 1232737.

  • Wickramasinghe, L., Leblanc, A. and Muthukumarana, S. (2023). Smoothed Dirichlet Distribution. Journal of Statistical Theory and Applications, 1-25. https://doi.org/10.1007/s44199-023-00062-8.

  • Bonner, C.,  Baran, A., Fiege, J. and Muthukumarana, S. (2023). Statistical methods to generate artificial slot floor data for the advancement of casino related research. 18th International Conference on Gambling & Risk Taking. 3-3-C.

  • Ciupeanua, A., Wickramasinghe, A., Muthukumarana, S. and Arino, J. (2023). Investigating Air Travel Network Changes in Canada, USA and Europe During COVID-19 Using Open Source Data. Research Square.

  • Wickramasinghe, A., Muthukumarana, S., Loewn, D. and Schaubroec, M. (2022). Temperature Clusters in Commercial Buildings Using K-means and Time Series Clustering. Energy Informatics, 5 (1), 1-14.

  • Wickramasinghe, A. and Muthukumarana, S. (2022). Assessing the Impact of the Density and Sparsity of the Network on Community Detection using a Gaussian Mixture Random Partition Graph Generator. International Journal of Information Technology, 14 (2), 607-618.

  • Munaweera, I., Harris, L., Moore, J.S., Tallman, R.F., Fisk, A.T., Gillis, D.M. and Muthukumarana, S. (2022). Estimating Survival Probabilities of Cambridge Bay Arctic Char Using Acoustic Telemetry Data and Bayesian Multi-state Capture-recapture Models. Canadian Journal of Fisheries and Aquatic Sciences, https://doi.org/10.1139/cjfas-2021-0262.

  • Enns, J., Katz, A., Yogendran, M., Urquia, M., Muthukumarana, S., Matharaarachchi, S., Singer, A., Nickel, N., Star, L., Cavett, T., Keynan, Y., Lix, L. and, Sanchez-Ramirez, D. (2022). A population data-driven approach to identifying ‘Long COVID’ cases in support of diagnosis and treatment. International Journal of Population Data Science, 7(3). PMCID: PMC9644890.

  • Wickramasinghe, A., Muthukumarana, S., Loewn, D., Schaubroec, M. and Wanasundara, S. (2022). Detection of Abnormal Behaviour of Wireless Sensors in School Buildings Using Dynamic Time Warping. Under Review.

  • Matharaarachchi, S., Domaratzki, M., Marasinghe, C., Muthukumarana, S. and Tennakoon, V. (2022). Modeling and Inference with Feature Importance for Assessing the Quality of Sleep among Chronic Kidney Disease Patients. Journal of Sleep Epidemiology, https://doi.org/10.1016/j.sleepe.2022.100041.

  • Matharaarachchi, S., Domaratzki, M. and Muthukumarana, S. (2022). Minimizing Features While Maintaining Performance in Data Classification Problems. PeerJ Computer Science, https://doi.org/10.7717/peerj-cs.1081.

  • Matharaarachchi, S., Domaratzki, M., Katz, A. and Muthukumarana, S. (2022). Discovering Long COVID Symptom Patterns: Association Rule Mining and Sentiment Analysis in Social Media Tweets. Journal of Medical Internet Research - Formative Research. 6(9): e37984.

  • Munaweera, I., Muthukumarana, S. and Jozani, M. J. (2022). A Generalized Quadratic Garrote Approach Towards Ridge Regression Analysis. Innovations in Multivariate Statistical Modeling, Emerging Topics in Statistics and Biostatistics . Springer, Cham. https://doi.org/10.1007/978-3-031-13971-0_15.

  • Mehnaz, J., Steeves, H.N., Fisher, J.T., Bonner, S.J., Muthukumarana, S. and Cowen, L.E. (2022). Shooting for Abundance: Comparing Integrated Multi-sampling Models for Camera Trap Data. Environmetrics. https://doi.org/10.1002/env.2761.

  • Dharmasena, I., Domaratzki, M. and Muthukumarana, S. (2021). Comparison of Resampling Methods on Mobile Apps User Behavior. Internet of Things and Connected Technologies, 253-271.

  • Cuny, L., Davies, K. and Muthukumarana, S. (2021). Order Restricted Bayesian Inference of the Simple Step-Stress Model Under Type-I Right Censoring With Weibull Distributed Lifetimes. Under Review.

  • Doshi, A., Johnson, B. and Muthukumarana, S. (2021). Modelling and Visualizations of Community Structures in Networks. Under Review.

  • Matharaarachchi, S., Domaratzki, M. and Muthukumarana, S. (2021). Assessing Feature Selection Method Performance with Class Imbalance Data. Machine Learning with Applications 6, 100170.

  • Munaweera, I., Muthukumarana, S., Gillis, D.M., Watkinson, D.A., Charles, C. and Enders, E.C. (2021). Assessing Movement Patterns using Bayesian State-Space Models on Lake Winnipeg Basin Walleye. Canadian Journal of Fisheries and Aquatic Sciences, 78 (10), 1407-1421.

  • Wickramasinghe, A. and Muthukumarana, S. (2021). Social Network Analysis and Community Detection on Spread of COVID-19. Model Assisted Statistics and Applications. 16 (1), 37-52.

  • Zhang, W., Wang, X., Muthukumarana, S. and Yang, P. (2021). A Continual Reassessment Method Without Undue Risk of Toxicity. Communications in Statistics - Simulation and Computation. 1-13.

  • Dharmasena, I., Domaratzki, M. and Muthukumarana, S. (2021). Modeling Mobile Apps User Behavior Using Bayesian Networks. International Journal of Information Technology. https://doi.org/10.1007/s41870-021-00699-7.

  • Neufeld, L.,  Muthukumarana, S., Fischer, J., Ray, J., Siegrist, J and Fraser, K. (2021). Breeding latitude is associated with the timing of nesting and migration around the annual calendar among Purple Martin (Progne subis) populations. Journal of Ornithology. DOI:10.1007/s10336-021-01894-w.

  • Doshi, A., Johnson, B. and Muthukumarana, S. (2020). Temporal Preservation of Cliques in Preferential Attachment Models. Under Review.

  • Anand, M., Rajapakse, A. Muthukumarana, S. and Bagen, B. (2020). Evaluation of a Stochastic Vehicle Travel Pattern Generation Model with Real-World Travel Data. IEEE Electric Power and Energy. Accepted.

  • Wickramasinghe, L., Leblanc, A. and Muthukumarana, S. (2020). Model Based Estimation of Baseball Batting Metrics. Journal of Applied Statistics. Accepted.

  • Muthukumarana, S., Martell, D. and Tiwari, R.C. (2019). Meta Analysis of Binary Data with Excessive Zeros in Two-arm Trials. Journal of Statistical Distributions and Applications 6, 1-17.

  • Muthukumarana, S., Vincent, K. and Tichon, J. (2019). Bayesian Item Response Analysis of Method-of-Payment Habits in Banking Surveys. Journal of Mathematical Finance 9, 1-10.

  • Muthukumarana, S. and Khargonkar, N. (2019). Modeling and Simulation of UEFA Champions League. 15th International Conference on Machine Learning and Data Mining, MLDM 2019 Proceedings Volume II, 820 - 834.

  • Kpekpena, C. and Muthukumarana, S. (2018). Bayesian Equivalence Testing and Meta-Analysis in Two-Arm Trials with Binary Data. Computational and Mathematical Methods in Medicine, 1- 8.

  • Kuwornu, J.P., Teare, G.F., Quail, J.M., Forget, E., Muthukumarana, S., Wang, X.E., Osman, M. and Lix, L.M. (2017). Comparison of the accuracy of classication models to estimate healthcare use and costs associated with COPD exacerbations in Saskatchewan, Canada: A retrospective cohort study. Canadian Journal of Respiratory Therapy, 53(3), 37-44.

  • Kroeker, K., Widdifield, J., Muthukumarana, S., Jiang, D. and Lix, L. (2017). Model-based methods for case definitions from administrative health data: application to rheumatoid arthritis. BMJ open 7 (6), e016173.

  • Kuwornu, J.P., Lix, L.M., Quail, J.M., Forget, E., Muthukumarana, S., Wang, X.E., Osman, M. and Teare, G.F. (2016). Identifying Distinct Healthcare Pathways During Episodes of Chronic Obstructive Pulmonary Disease Exacerbations. Medicine, 95 (9), e2888.

  • Muthukumarana, S. and Tiwari, R.C. (2016). Meta-Analysis using Dirichlet Process. Statistical Methods in Medical Research 25 (1), 352-365.

  • Wickramasinghe, L. and Muthukumarana, S. (2016). Assessing Non-Inferiority Hypothesis in Two-Arm Trials with Log-normal Data. SM Journal of Biometrics and Biostatistics 1 (1), 1-11.

  • Muthukumarana, S. and Evans, M. (2015). Bayesian Inference in Two-arm Trials Using Relative Belief Ratios. Pharmaceutical Statistics 14 (6), 471-478.

  • Swartz, T.B., Gill, P.S. and Muthukumarana, S. (2015). A Bayesian Approach for the Analysis of Triadic Data in Cognitive Social Structures. Journal of the Royal Statistical Society: Series C 64 (4), 593-610.

  • Muthukumarana, S. and Swartz, T.B. (2014). Bayesian Analysis of Ordinal Survey Data using the Dirichlet Process to Account for Respondent Personality Traits. Communications in Statistics - Simulation and Computation, 43(1), 82-98.

  • Koulis, T., Muthukumarana, S. and Briercliffe, C. (2014). A Bayesian Stochastic Model for Batting Performance Evaluation in One-Day Cricket. Journal of Quantitative Analysis in Sports, 10 (1), 1-13.

  • Gamalo, M.A., Muthukumarana, S., Ghosh, P. and Tiwari, R.C. (2013). A Generalized p-value Approach for Assessing Noninferiority in a Three-Arm Trial. Statistical Methods in Medical Research 22 (3), 261-277.

  • Muthukumarana, S. and Ghosh, P. (2013). A Semiparametric Bayesian Approach for Mark-Recapture Estimation. Model Assisted Statistics and Applications 8 (1), 29-39.

  • Appadoo, S., Thavaneswaran, A. and Muthukumarana, S. (2012). Option Pricing Applications of Quadratic Volatility Models. Journal of Mathematical Finance 2 (2), 159-174.

  • Ghosh, P., Gill, P.S., Muthukumarana, S. and Swartz, T.B. (2010). A Semi-parametric Bayesian Approach to Network Modelling using Dirichlet Process Priors. The Australian and New Zealand Journal of Statistics, 52(3), 289-302.

  • Swartz, T.B., Gill, P.S. and Muthukumarana, S. (2009). Modelling and Simulation for One-day Cricket. The Canadian Journal of Statistics, 37(2), 143-160.

  • Muthukumarana, S., Schwarz, C.J. and Swartz, T.B. (2008). Discussion: Towards a Bayesian analysis template? Authors' response. The Canadian Journal of Statistics, 36(1), 24-26.

  • Muthukumarana, S., Schwarz, C.J. and Swartz, T.B. (2008). Bayesian Analysis of Mark-Recapture Data with Travel Time-dependent Survival Probabilities (with discussion). The Canadian Journal of Statistics, 36(1), 5-21.

bottom of page